Guest Article: Cheapest Habitat

Cheapest HabitatGuest Article from user Mike:

While talking with Mart about the funding of a simple underwater habitat for a first proof-of-concept, I wondered what would be the cheapest way to bring a subsea station in operation. In other words, what is the rock-bottom price for a simple solution that would allow at least two divers to spend a couple of days below the water surface? Continue reading “Guest Article: Cheapest Habitat”

Support by Sharing

Financing an undersea station

financing an undersea stationThe most professional underwater habitat so far is still the Aquarius habitat in Florida. This quality comes to a certain price of $1.2 to $3 million per year. Due to budget cuts, NOAA ceased funding Aquarius habitat after September 2012, with no further missions scheduled after a July 2012 mission. It was a very exciting period having the facility on risk. It took until January 2013 when a proposal to keep Aquarius running under Florida International University administration was accepted. What could we do in future projects to avoid sooner or later close-downs by lacks of financing? Continue reading “Financing an undersea station”

Support by Sharing

Undersea Station: Biocoil

Lloyd Godson and the Biocoil(Updated 04 April, 2017) In our undersea station one of the ways to absorb Carbon dioxide from the air and to produce oxygen instead might be beside classic scrubbers the Biocoil reactor that was first introduced by a science class of Cascade High School in the US. It looks like a quiet simple system based on Chlorella algae and it was used in Lloyd Godson’s ‘BioSub’ project in 2007.

The Biocoil and BioSUB Projects on ABC’s Behind The News (BTN):

Continue reading “Undersea Station: Biocoil”

Support by Sharing

Digital Library Updated

Digital LibraryThe Calamar Park Digital Library is updated. There you will find all kind of relevant images, articles, manuals and reports about underwater stations and related subjects. For access contact Mart by mail.

Support by Sharing

Augmented Reality Underwater

Augmented Reality Underwater by Hololens in Neemo 21How helpful would it be to have Augmented Reality underwater in a closed environment like an Undersea Station? NASA experimented with Augmented Reality (AR) or Mixed Reality (MR) by using Microsofts HoloLens at the Aquarius Reef Base off the coast of Key Largo, Florida, in late July/August 2015. Potential astronauts used the device for tasks like checking emergency breathing equipment. Therefore they were going through a series of steps ranging from turning valves to finding and plugging in equipment, and setting up equipment to support an undersea robot. Continue reading “Augmented Reality Underwater”

Support by Sharing

Underwater Station: Virtual Porthole

Virtual Porthole inside the Underwater StationHere is an idea for a porthole where the structure of the underwater station does not allow to install one. For example on the ceiling, where penetrations of the shell should be strictly avoided in order to maintain the integrity of the emergency safety area in the upper part of the living area. The Virtual Porthole would consist of a camera on the exterior of the shell and a TV flat screen on same position inside the habitat. Continue reading “Underwater Station: Virtual Porthole”

Support by Sharing

Undersea Station Dietary: Mana

To provide food to the Aquanauts might be more difficult than thought concerning changing weather, water/pressureproof transportation, as well as emerging odours and chemical compounds inside the habitats atmosphere.  A complete or partial solution could be a meal replacement like Mana. MANA is a balanced food providing all nutrients the human body needs. It comes in the form of drink or powder being produced in Prague. Learn more on their webpage.

Support by Sharing

Aquanaut Decompression

NEEMO Diver under Aquarius HabitatTo stay in an underwater habitat longer than 12 hours means to stay under saturated conditions, which requires an aquanaut decompression sequence of at least several hours. This decompression procedure is very critical: if any of aquanauts gets into an emergency situation, there is no way to take him out of the chamber before the sequence is finished. If the procedure is badly designed there is no way to bring a paramedic into the chamber. For the period of several hours the aquanaut would be alone with his companion. Continue reading “Aquanaut Decompression”

Support by Sharing

The UW Station Forum (2007-2012)

forum-logoThe first idea for an undersea station developed in 2007 with the opening of the Underwater Station Forum on UnderwaterPromotion.com. In the following 5 years we collected nearly 250 evaluated contributions on 34 subjects. Without counting all hits of bots and search engines we had more than 200.000 interested readers. The page might have been fatally hacked, but all these contributions were not lost. We distilled them and are still publishing the summaries on CalamarPark.com since 2016. Still it is an open-source project and we ask everyone interested in the subject to contribute his ideas and comments via the comment function under each post.

Support by Sharing

Plants Clean Air and Water for Indoor Environments

Osmunda Regalis, Christian Fischer [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)],Back in the late ‘80s, NASA was looking for ways to detoxify the air in its space stations. So it conducted a study to determine the most effective plants for filtering the air of toxic agents and converting carbon dioxide to oxygen.See more on GOOD Magazine. Or the corresponding pdf’s:

Image: Osmunda Regalis, taken from Wikimedia, Christian Fischer [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)],

Support by Sharing

Nemo’s Garden Project by OCEAN REEF

Portulaca_sativa_01 © Wikimedia Commons, User: BurschikGrowing plants in the undersea station will be very difficult. But the experiment below brought the following question to my mind: If the site of the station would be the Mediterranean, which is a subtropical environment, then the main season would be the summertime. During that period many crops would not grow due to sunlight intensity and heat. The project in the video might be an alternative to use the seawater as a light filter and cooling medium. Would it be worth to investigate?

Support by Sharing

‘Project Undersea Station’ Introduction

Wordpress Header(Updated 05.05.2017) PROJECT UNDERSEA STATION aims the development of a new generation of undersea settlements. Technically based on experiences of prior stations there will be several new considerations concerning expandability, size and usage. All results will be open-source (except some marketing details necessary for continuous popularity) and anybody who is interested has the chance to contribute his ideas. Until the minimum financial frame is completed we will go on collecting as many information as possible, implement them to a realistic blueprint and constantly improve the final design. Ultimately the final goal is the actual building of the habitat. Continue reading “‘Project Undersea Station’ Introduction”

Support by Sharing

CO2 Scrubber

Amron International, CO2 ScrubberLonger stays in an underwater station require systems to filter out Carbon Dioxide (CO2) from the air that is exhaled by the aquanauts. These CO2 scrubbers generally consist of a fan that pulls air through a canister filled with Carbon Dioxide (CO2) adsorbent, such as Sodasorb or Sodalime. To get a rough idea about CO2 scrubbers and their prices visit the webpage of AMRON International.

 

Support by Sharing

Undersea Station Draft No.4: Hangar

© CalamarPark.comSo far the final draft follows the hangar shape. Having a look at the evaluation list in the ‘Structural Shape‘ chapter it seems like the ideal shape for the undersea station.

Because of the sand used as variable ballast and the space under the station the structure is easily removable by just releasing the sand. No harmful materials or items would be left behind which serves the ecological idea. Continue reading “Undersea Station Draft No.4: Hangar”

Support by Sharing

Undersea Station: Operational Depth

© CalamarPark.comThe operational depth of the station correlates with the targeted type of users and the desired decompression schedule. Let’s start from the extreme:

50m and more (depth of Sealab III -189m, depth of Conshelf III -100m): This depth is highly complicated. The aquanauts are saturated and demand long decompression periods of several days after the dives. Therefore it is impossible to go and come back, but one dive (exposure) should last several days. The breathing mixture consists mostly of Helium which makes communication without unscramblers impossible. The handling of pure oxygen requires oxygen-clear equipment. The aquanauts have to pass a long training program. The environment is cold and dark. Depths like this might be a target for the future, but for the beginning and especially for the purpose to attract attention it is not first choice. All these obstacles occur at all depths of more than 60m. Continue reading “Undersea Station: Operational Depth”

Support by Sharing

Undersea Station: Event Plan

IWM Theme Park AnchorOne of the differences to other previous stations is the fact that it is not only available for a small group of scientists, but to a large group even of private participants. Of course, it still requires a very strict program to enter the station. The idea is to settle the station inside a park (The Calamar-Park) and make it available for all sport divers. For this touristic purpose a row of activities and attractions has to be designed. These attractions will follow a chronological program to maintain continuous popularity. That means that when an attraction reaches its half-time period another attraction should be already on its way as seen in the following graph: Continue reading “Undersea Station: Event Plan”

Support by Sharing